Skip to article frontmatterSkip to article content

上下文工程

上下文工程(Context Engineering)对于 Agent 得出正确的结果至关重要。模型回答不好,很多时候不是因为能力不足,而是因为没有获得足以推断出正确结果的上下文信息。通过上下文工程,增强 Agent 获取和管理上下文的能力,是很有必要的。

LangGraph 将上下文分为三种类型:

  • 模型上下文(Model Context)

  • 工具上下文(Tool Context)

  • 生命周期上下文(Life-cycle Context)

无论哪种 Context,都需要定义它的 Schema。在这方面,LangGraph 提供了相当高的自由度,你可以使用 dataclassespydanticTypedDict 这些包的任意一个创建你的 Context Schema.

# !pip install ipynbname
import os
import uuid
import sqlite3

from typing import Callable
from dotenv import load_dotenv
from dataclasses import dataclass
from langchain_openai import ChatOpenAI
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
from langchain.agents.middleware import dynamic_prompt, wrap_model_call, ModelRequest, ModelResponse, SummarizationMiddleware
from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.store.memory import InMemoryStore
from langgraph.store.sqlite import SqliteStore

# 加载模型配置
_ = load_dotenv()

# 加载模型
llm = ChatOpenAI(
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url=os.getenv("DASHSCOPE_BASE_URL"),
    model="qwen3-coder-plus",
    temperature=0.7,
)

一、动态修改系统提示词

上下文工程与前序章节的中间件(middleware)和记忆(memory)密不可分。上下文的具体实现依赖中间件,而上下文的存储则依赖记忆系统。具体来讲,LangGraph 预置了 @dynamic_prompt 中间件,用于动态修改系统提示词。

既然是动态修改,肯定需要某个条件来触发修改。除了开发触发逻辑,我们还需要从智能体中获取触发逻辑所需的即时变量。这些变量通常存储在以下三个存储介质中:

  • 运行时(Runtime)- 所有节点共享一个 Runtime。同一时刻,所有节点取到的 Runtime 的值是相同的。一般用于存储时效性要求较高的信息。

  • 短期记忆(State)- 在节点之间按顺序传递,每个节点接收上一个节点处理后的 State。主要用于存储 Prompt 和 AI Message。

  • 长期记忆(Store)- 负责持久化存储,可以跨 Workflow / Agent 保存信息。可以用来存用户偏好、以前算过的统计值等。

以下三个例子,分别演示如何使用来自 Runtime、State、Store 中的上下文,编写触发条件。

1)使用 State 加载上下文

利用 State 中蕴含的信息操纵 system prompt.

@dynamic_prompt
def state_aware_prompt(request: ModelRequest) -> str:
    # request.messages is a shortcut for request.state["messages"]
    message_count = len(request.messages)

    base = "You are a helpful assistant."

    if message_count > 6:
        base += "\nThis is a long conversation - be extra concise."

    # 临时打印base看效果
    print(base)

    return base

agent = create_agent(
    model=llm,
    middleware=[state_aware_prompt]
)

result = agent.invoke(
    {"messages": [
        {"role": "user", "content": "广州今天的天气怎么样?"},
        {"role": "assistant", "content": "广州天气很好"},
        {"role": "user", "content": "吃点什么好呢"},
        {"role": "assistant", "content": "要不要吃香茅鳗鱼煲"},
        {"role": "user", "content": "香茅是什么"},
        {"role": "assistant", "content": "香茅又名柠檬草,常见于泰式冬阴功汤、越南烤肉"},
        {"role": "user", "content": "auv 那还等什么,咱吃去吧"},
    ]},
)

for message in result['messages']:
    message.pretty_print()
You are a helpful assistant.
This is a long conversation - be extra concise.
================================ Human Message =================================

广州今天的天气怎么样?
================================== Ai Message ==================================

广州天气很好
================================ Human Message =================================

吃点什么好呢
================================== Ai Message ==================================

要不要吃香茅鳗鱼煲
================================ Human Message =================================

香茅是什么
================================== Ai Message ==================================

香茅又名柠檬草,常见于泰式冬阴功汤、越南烤肉
================================ Human Message =================================

auv 那还等什么,咱吃去吧
================================== Ai Message ==================================

好主意!香茅鳗鱼煲听起来很美味,走吧!

message_count > 6 里的 6 改成 7,试试看会发生什么。

2)使用 Store 加载上下文

@dataclass
class Context:
    user_id: str

@dynamic_prompt
def store_aware_prompt(request: ModelRequest) -> str:
    user_id = request.runtime.context.user_id

    # Read from Store: get user preferences
    store = request.runtime.store
    user_prefs = store.get(("preferences",), user_id)

    base = "You are a helpful assistant."

    if user_prefs:
        style = user_prefs.value.get("communication_style", "balanced")
        base += f"\nUser prefers {style} responses."

    return base

store = InMemoryStore()

agent = create_agent(
    model=llm,
    middleware=[store_aware_prompt],
    context_schema=Context,
    store=store,
)

# 预置两条偏好信息
store.put(("preferences",), "user_1", {"communication_style": "Chinese"})
store.put(("preferences",), "user_2", {"communication_style": "Korean"})
# 用户1喜欢中文回复
result = agent.invoke(
    {"messages": [
        {"role": "system", "content": "You are a helpful assistant. Please be extra concise."},
        {"role": "user", "content": 'What is a "hold short line"?'}
    ]},
    context=Context(user_id="user_1"),
)

for message in result['messages']:
    message.pretty_print()
================================ System Message ================================

You are a helpful assistant. Please be extra concise.
================================ Human Message =================================

What is a "hold short line"?
================================== Ai Message ==================================

"Hold short line" 是航空术语,指跑道或滑行道上的一条标记线,要求飞机在此线前停止,不得越过。通常用于:

1. **跑道等待线** - 等待起飞许可
2. **滑行道等待线** - 等待进入跑道或其他区域

这是飞行安全的重要程序。
# 用户2喜欢韩文回复
result = agent.invoke(
    {"messages": [
        {"role": "system", "content": "You are a helpful assistant. Please be extra concise."},
        {"role": "user", "content": 'What is a "hold short line"?'}
    ]},
    context=Context(user_id="user_2"),
)

for message in result['messages']:
    message.pretty_print()
================================ System Message ================================

You are a helpful assistant. Please be extra concise.
================================ Human Message =================================

What is a "hold short line"?
================================== Ai Message ==================================

"홀드 쇼트 라인(Hold Short Line)"은 공항 활주로에서 항공기가 특정 지점까지만 진입하도록 지시하는 선입니다. 이 선을 넘어서는 것은 금지되어 있으며, 관제소의 허가를 받아야만 진입할 수 있습니다. 주로 활주로와 교차하는 지점이나 활주로 진입 전에 설치되어 안전을 확보합니다.

3)使用 Runtime 加载上下文

@dataclass
class Context:
    user_role: str
    deployment_env: str

@dynamic_prompt
def context_aware_prompt(request: ModelRequest) -> str:
    # Read from Runtime Context: user role and environment
    user_role = request.runtime.context.user_role
    env = request.runtime.context.deployment_env

    base = "You are a helpful assistant."

    if user_role == "admin":
        base += "\nYou can use the get_weather tool."
    else:
        base += "\nYou are prohibited from using the get_weather tool."

    if env == "production":
        base += "\nBe extra careful with any data modifications."

    return base

@tool
def get_weather(city: str) -> str:
    """Get weather for a given city."""
    return f"It's always sunny in {city}!"

agent = create_agent(
    model=llm,
    tools=[get_weather],
    middleware=[context_aware_prompt],
    context_schema=Context,
    checkpointer=InMemorySaver(),
)
# 利用 Runtime 中的两个变量,动态控制 System prompt
# 将 user_role 设为 admin,允许使用天气查询工具
config = {'configurable': {'thread_id': str(uuid.uuid4())}}
result = agent.invoke(
    {"messages": [{"role": "user", "content": "广州今天的天气怎么样?"}]},
    context=Context(user_role="admin", deployment_env="production"),
    config=config,
)

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

广州今天的天气怎么样?
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_b7a1beefd02f4703a3d0caaa)
 Call ID: call_b7a1beefd02f4703a3d0caaa
  Args:
    city: 广州
================================= Tool Message =================================
Name: get_weather

It's always sunny in 广州!
================================== Ai Message ==================================

根据我获取的信息,广州今天是晴天!气温适宜,阳光明媚。如果你在广州,记得做好防晒措施,享受美好的一天!
# 若将 user_role 改为 viewer,则无法使用天气查询工具
config = {'configurable': {'thread_id': str(uuid.uuid4())}}
result = agent.invoke(
    {"messages": [{"role": "user", "content": "广州今天的天气怎么样?"}]},
    context=Context(user_role="viewer", deployment_env="production"),
    config=config,
)

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

广州今天的天气怎么样?
================================== Ai Message ==================================

抱歉,我无法获取天气信息。您可以通过其他途径查询广州今天的天气,例如使用天气应用或访问天气网站。
result['messages']
[HumanMessage(content='广州今天的天气怎么样?', additional_kwargs={}, response_metadata={}, id='58493935-80a8-4f05-818d-4fa3ef684657'), AIMessage(content='抱歉,我无法获取天气信息。您可以通过其他途径查询广州今天的天气,例如使用天气应用或访问天气网站。', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 26, 'prompt_tokens': 287, 'total_tokens': 313, 'completion_tokens_details': None, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens': 0}}, 'model_provider': 'openai', 'model_name': 'qwen3-coder-plus', 'system_fingerprint': None, 'id': 'chatcmpl-b3da39f7-8f49-4a63-9794-06bd7578354f', 'finish_reason': 'stop', 'logprobs': None}, id='lc_run--5c17667c-38c3-4856-9610-9d6f4cfd4d16-0', usage_metadata={'input_tokens': 287, 'output_tokens': 26, 'total_tokens': 313, 'input_token_details': {'cache_read': 0}, 'output_token_details': {}})]

二、动态修改消息列表

LangGraph 预制了动态修改消息列表(Messages)的中间件 @wrap_model_call。上一节已经演示如何从 StateStoreRuntime 中获取上下文,本节将不再一一演示。在下面这个例子中,我们主要演示如何使用 Runtime 将本地文件的内容注入消息列表。

@dataclass
class FileContext:
    uploaded_files: list[dict]

@wrap_model_call
def inject_file_context(
    request: ModelRequest,
    handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
    """Inject context about files user has uploaded this session."""
    uploaded_files = request.runtime.context.uploaded_files

    try:
        base_dir = os.path.dirname(os.path.abspath(__file__))
    except Exception as e:
        import ipynbname
        import os
        notebook_path = ipynbname.path()
        base_dir = os.path.dirname(notebook_path)

    file_sections = []
    for file in uploaded_files:
        name, ftype = "", ""
        path = file.get("path")
        if path:
            base_filename = os.path.basename(path)
            stem, ext = os.path.splitext(base_filename)
            name = stem or base_filename
            ftype = (ext.lstrip(".") if ext else None)

            # 构建文件描述内容
            content_list = [f"名称: {name}"]
            if ftype:
                content_list.append(f"类型: {ftype}")

            # 解析相对路径为绝对路径
            abs_path = path if os.path.isabs(path) else os.path.join(base_dir, path)

            # 读取文件内容
            content_block = ""
            if abs_path and os.path.exists(abs_path):
                try:
                    with open(abs_path, "r", encoding="utf-8") as f:
                        content_block = f.read()
                except Exception as e:
                    content_block = f"[读取文件错误 '{abs_path}': {e}]"
            else:
                content_block = "[文件路径缺失或未找到]"

            section = (
                f"---\n"
                f"{chr(10).join(content_list)}\n\n"
                f"{content_block}\n"
                f"---"
            )
            file_sections.append(section)

        file_context = (
            "已加载的会话文件:\n"
            f"{chr(10).join(file_sections)}"
            "\n回答问题时请参考这些文件。"
        )

        # Inject file context before recent messages
        messages = [  
            *request.messages,
            {"role": "user", "content": file_context},
        ]
        request = request.override(messages=messages)  

    return handler(request)

agent = create_agent(
    model=llm,
    middleware=[inject_file_context],
    context_schema=FileContext,
)
result = agent.invoke(
    {
        "messages": [{
            "role": "user",
            "content": "关于上海地铁的无脸乘客,有什么需要注意的?",
        }],
    },
    context=FileContext(uploaded_files=[{"path": "./docs/rule_horror.md"}]),
)

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

关于上海地铁的无脸乘客,有什么需要注意的?
================================== Ai Message ==================================

根据《上海规则怪谈》中的描述,关于上海地铁的“无脸乘客”,你需要特别注意以下几点:

---

### 🚇 **地铁上的陌生人(无脸乘客)规则:**

> **“地铁运营结束后,若你仍身处车厢内,会出现一位无脸乘客。他会低声问:‘你要去哪?’只能报一个真实存在的上海地名。说出不存在的地名或保持沉默,你会在车厢内看到自己的尸体。”**

---

### ⚠️ 注意事项:

1. **时间点:**  
   该现象发生在**地铁运营结束之后**,如果你因某种原因滞留在地铁车厢内,请提高警惕。

2. **无脸乘客的出现:**  
   他会主动靠近你,并低声询问:“**你要去哪?**”

3. **正确应对方式:**  
   - 必须回答一个**真实存在于上海的地名**,例如“人民广场”、“徐家汇”、“陆家嘴”等。
   - 回答要清晰、准确,不能犹豫或说错。

4. **错误行为及后果:**  
   - 若你回答一个**不存在的地名**(如“新宿”、“王府井”),或**保持沉默**,你将会在车厢中看到**自己的尸体**。
   - 这意味着你将无法逃脱死亡的命运。

---

### 🧠 小贴士:

- 如果你不确定某个地名是否属于上海,建议提前了解一些真实地名以防万一。
- 若真的遭遇此情景,保持冷静,迅速回忆一个确切的上海地名作答。
- 切勿试图欺骗、开玩笑或沉默不语。

---

**记住:规则是生存的底线,违者——后果自负。**

三、在工具中使用上下文

下面,我们尝试在工具中使用存储在 SqliteStore 中的上下文信息。

# 删除SQLite数据库
if os.path.exists("user-info.db"):
    os.remove("user-info.db")

# 创建SQLite存储
conn = sqlite3.connect("user-info.db", check_same_thread=False, isolation_level=None)
conn.execute("PRAGMA journal_mode=WAL;")
conn.execute("PRAGMA busy_timeout = 30000;")

store = SqliteStore(conn)

# 预置两条用户信息
store.put(("user_info",), "柳如烟", {"description": "清冷才女,身怀绝技,为寻身世之谜踏入江湖。", "birthplace": "吴兴县"})
store.put(("user_info",), "苏慕白", {"description": "孤傲剑客,剑法超群,背负家族血仇,隐于市井追寻真相。", "birthplace": "杭县"})

1)基础用例

使用 ToolRuntime

@tool
def fetch_user_data(
    user_id: str,
    runtime: ToolRuntime
) -> str:
    """
    Fetch user information from the in-memory store.

    :param user_id: The unique identifier of the user.
    :param runtime: The tool runtime context injected by the framework.
    :return: The user's description string if found; an empty string otherwise.
    """
    store = runtime.store
    user_info = store.get(("user_info",), user_id)

    user_desc = ""
    if user_info:
        user_desc = user_info.value.get("description", "")

    return user_desc

agent = create_agent(
    model=llm,
    tools=[fetch_user_data],
    store=store,
)
result = agent.invoke({
    "messages": [{
        "role": "user",
        "content": "五分钟之内,我要柳如烟的全部信息"
    }]
})

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

五分钟之内,我要柳如烟的全部信息
================================== Ai Message ==================================
Tool Calls:
  fetch_user_data (call_bb5059c893d74cebac0f7727)
 Call ID: call_bb5059c893d74cebac0f7727
  Args:
    user_id: 柳如烟
================================= Tool Message =================================
Name: fetch_user_data

清冷才女,身怀绝技,为寻身世之谜踏入江湖。
================================== Ai Message ==================================

根据我目前掌握的信息,柳如烟是一位清冷才女,身怀绝技,为了探寻自己的身世之谜而踏入江湖。不过,这仅仅是她的一部分信息,更多详细资料可能需要进一步调查才能获得。你对她有什么特别的兴趣或目的吗?或许我可以帮你了解更多。

2)复杂一点的例子

使用 ToolRuntime[Context]

@dataclass
class Context:
    key: str

@tool
def fetch_user_data(
    user_id: str,
    runtime: ToolRuntime[Context]
) -> str:
    """
    Fetch user information from the in-memory store.

    :param user_id: The unique identifier of the user.
    :param runtime: The tool runtime context injected by the framework.
    :return: The user's description string if found; an empty string otherwise.
    """
    key = runtime.context.key

    store = runtime.store
    user_info = store.get(("user_info",), user_id)

    user_desc = ""
    if user_info:
        user_desc = user_info.value.get(key, "")

    return f"{key}: {user_desc}"

agent = create_agent(
    model=llm,
    tools=[fetch_user_data],
    store=store,
)
result = agent.invoke(
    {"messages": [{"role": "user", "content": "五分钟之内,我要柳如烟的全部信息"}]},
    context=Context(key="birthplace"),
)

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

五分钟之内,我要柳如烟的全部信息
================================== Ai Message ==================================
Tool Calls:
  fetch_user_data (call_5373b11fd735425990cc9748)
 Call ID: call_5373b11fd735425990cc9748
  Args:
    user_id: 柳如烟
================================= Tool Message =================================
Name: fetch_user_data

birthplace: 吴兴县
================================== Ai Message ==================================

柳如烟的基本信息如下:

- **出生地**:吴兴县

由于时间限制,目前仅获取到以上信息。如需更详细的资料,请提供更多线索或延长查询时间。

四、压缩上下文

LangChain 提供了内置的中间件 SummarizationMiddleware 用于压缩上下文。该中间件维护的是典型的 生命周期上下文,与 模型上下文工具上下文 的瞬态更新不同,生命周期上下文会持续更新:持续将旧消息替换为摘要。

除非上下文超长,导致模型能力降低,否则不需要使用 SummarizationMiddleware。一般来说,触发摘要得值可以设得较大。比如:

  • max_tokens_before_summary: 3000

  • messages_to_keep: 20

如果你想了解更多关于上下文腐坏(Context Rot)的信息,Chroma 团队在 2025 年 7 月 14 日发布的 Context Rot: How Increasing Input Tokens Impacts LLM Performance,系统性地揭示了长上下文导致模型性能退化的现象。

# 创建短期记忆
checkpointer = InMemorySaver()

# 创建带内置摘要中间件的Agent
# 为了让配置能在我们的例子里生效,这里的触发值设得很小
agent = create_agent(
    model=llm,
    middleware=[
        SummarizationMiddleware(
            model=llm,
            max_tokens_before_summary=40,  # Trigger summarization at 40 tokens
            messages_to_keep=1,  # Keep last 1 messages after summary
        ),
    ],
)
result = agent.invoke(
    {"messages": [
        {"role": "user", "content": "广州今天的天气怎么样?"},
        {"role": "assistant", "content": "广州天气很好"},
        {"role": "user", "content": "吃点什么好呢"},
        {"role": "assistant", "content": "要不要吃香茅鳗鱼煲"},
        {"role": "user", "content": "香茅是什么"},
        {"role": "assistant", "content": "香茅又名柠檬草,常见于泰式冬阴功汤、越南烤肉"},
        {"role": "user", "content": "auv 那还等什么,咱吃去吧"},
    ]},
    checkpointer=checkpointer,
)

for message in result['messages']:
    message.pretty_print()
================================ Human Message =================================

Here is a summary of the conversation to date:

广州天气很好;建议吃香茅鳗鱼煲;香茅又名柠檬草,常见于泰式冬阴功汤、越南烤肉。
================================ Human Message =================================

auv 那还等什么,咱吃去吧
================================== Ai Message ==================================

哈哈,看起来你已经迫不及待了!😄

既然广州天气这么好,香茅鳗鱼煲听起来确实是个不错的选择。你提到的香茅(柠檬草)确实是东南亚料理中的经典香料,能为鳗鱼增添独特的清香。

不过我得提醒一下,作为AI,我无法真正和你一起去吃饭。如果你真的要去品尝这道菜,记得选择食材新鲜、口碑好的餐厅哦!

你是在广州吗?还是在其他地方想尝试这道菜?